投稿指南
一、本刊要求作者有严谨的学风和朴实的文风,提倡互相尊重和自由讨论。凡采用他人学说,必须加注说明。 二、不要超过10000字为宜,精粹的短篇,尤为欢迎。 三、请作者将稿件(用WORD格式)发送到下面给出的征文信箱中。 四、凡来稿请作者自留底稿,恕不退稿。 五、为规范排版,请作者在上传修改稿时严格按以下要求: 1.论文要求有题名、摘要、关键词、作者姓名、作者工作单位(名称,省市邮编)等内容一份。 2.基金项目和作者简介按下列格式: 基金项目:项目名称(编号) 作者简介:姓名(出生年-),性别,民族(汉族可省略),籍贯,职称,学位,研究方向。 3.文章一般有引言部分和正文部分,正文部分用阿拉伯数字分级编号法,一般用两级。插图下方应注明图序和图名。表格应采用三线表,表格上方应注明表序和表名。 4.参考文献列出的一般应限于作者直接阅读过的、最主要的、发表在正式出版物上的文献。其他相关注释可用脚注在当页标注。参考文献的著录应执行国家标准GB7714-87的规定,采用顺序编码制。

电力工业论文_基于深度强化学习的主动配电网高

来源:电力系统保护与控制 【在线投稿】 栏目:期刊导读 时间:2022-01-21
作者:网站采编
关键词:
摘要:文章摘要:随着全球极端天气事件频发,电力系统在极端自然灾害下恢复力的研究日益受到关注。本文提出基于深度强化学习的高恢复力决策方法,将极端灾害下配电网运行状态和线路故

文章摘要:随着全球极端天气事件频发,电力系统在极端自然灾害下恢复力的研究日益受到关注。本文提出基于深度强化学习的高恢复力决策方法,将极端灾害下配电网运行状态和线路故障状态作为观测状态集合,自学习智能体Agent在当前环境观测状态下寻求可行的决策策略进行动作,定义自学习Agent的回报函数以进行动作评价;采用观测状态数据,开展基于竞争深度Q网络(dueling deep Q network,DDQN)的深度强化学习(deep reinforcement learning,DRL)训练,智能体Agent通过试错学习方式选择动作,试错经验在估值函数Q矩阵中存储,实现状态到主动配电网实时故障恢复策略的非线性映射;最后结合改进的IEEE 33节点算例,基于蒙特卡罗法仿真随机故障场景,对所提出方法生成的故障恢复随机优化决策进行分析。结果表明:通过主动配电网的分布式电源、联络开关和可中断负荷的协调优化控制,可以有效提升极端灾害下供电能力。

文章关键词:

论文分类号:TP18;TM727

文章来源:《电力系统保护与控制》 网址: http://www.dlxtbhykzzz.cn/qikandaodu/2022/0121/1231.html



上一篇:动力工程论文_双碳目标下低碳综合能源系统规划
下一篇:工业经济论文_电煤协同发展 煤炭价格逐步回落

电力系统保护与控制投稿 | 电力系统保护与控制编辑部| 电力系统保护与控制版面费 | 电力系统保护与控制论文发表 | 电力系统保护与控制最新目录
Copyright © 2018 《电力系统保护与控制》杂志社 版权所有
投稿电话: 投稿邮箱: