投稿指南
一、本刊要求作者有严谨的学风和朴实的文风,提倡互相尊重和自由讨论。凡采用他人学说,必须加注说明。 二、不要超过10000字为宜,精粹的短篇,尤为欢迎。 三、请作者将稿件(用WORD格式)发送到下面给出的征文信箱中。 四、凡来稿请作者自留底稿,恕不退稿。 五、为规范排版,请作者在上传修改稿时严格按以下要求: 1.论文要求有题名、摘要、关键词、作者姓名、作者工作单位(名称,省市邮编)等内容一份。 2.基金项目和作者简介按下列格式: 基金项目:项目名称(编号) 作者简介:姓名(出生年-),性别,民族(汉族可省略),籍贯,职称,学位,研究方向。 3.文章一般有引言部分和正文部分,正文部分用阿拉伯数字分级编号法,一般用两级。插图下方应注明图序和图名。表格应采用三线表,表格上方应注明表序和表名。 4.参考文献列出的一般应限于作者直接阅读过的、最主要的、发表在正式出版物上的文献。其他相关注释可用脚注在当页标注。参考文献的著录应执行国家标准GB7714-87的规定,采用顺序编码制。

电力工业论文_生成对抗网络及其在电力系统中的

来源:电力系统保护与控制 【在线投稿】 栏目:期刊导读 时间:2022-06-10
作者:网站采编
关键词:
摘要:文章摘要:随着电力系统的迅猛发展,如何高效利用海量、多源、多维的电力数据,是当前电力行业面临的重要技术问题之一。相对于传统机器学习算法,深度学习具有较强的数据降维能

文章摘要:随着电力系统的迅猛发展,如何高效利用海量、多源、多维的电力数据,是当前电力行业面临的重要技术问题之一。相对于传统机器学习算法,深度学习具有较强的数据降维能力、非线性拟合能力和特征提取能力。生成对抗网络(generative adversarial networks, GAN)作为一类深度学习模型,能够很好地实现电力数据样本的增强与生成。本文首先介绍了GAN的基本原理,分析了其优势与劣势;此后从网络结构与目标函数的角度出发,分别介绍了在电力系统中应用较为广泛的四种GAN衍生模型,进而对GAN在电力系统中的应用现状进行了详细的综述,归纳了每个应用场景所采用的GAN模型及其特点;最后,总结了GAN在电力系统中进一步深入应用所要解决的问题,并展望了未来的应用前景。

文章关键词:

论文作者:邵振国 张承圣 陈飞雄 谢雨寒 

论文分类号:TM73

文章来源:《电力系统保护与控制》 网址: http://www.dlxtbhykzzz.cn/qikandaodu/2022/0610/1274.html



上一篇:电力工业论文_电力系统规划设计研究
下一篇:电力工业论文_电力市场环境下信息物理社会融合

电力系统保护与控制投稿 | 电力系统保护与控制编辑部| 电力系统保护与控制版面费 | 电力系统保护与控制论文发表 | 电力系统保护与控制最新目录
Copyright © 2018 《电力系统保护与控制》杂志社 版权所有
投稿电话: 投稿邮箱: